Contents lists available at ScienceDirect

## Talanta



journal homepage: www.elsevier.com/locate/talanta

# Quantification of F<sub>2</sub>-isoprostane isomers in cultured human lung epithelial cells after silica oxide and metal oxide nanoparticle treatment by liquid chromatography/tandem mass spectrometry

## Xiaoqian Liu, Philip D. Whitefield, Yinfa Ma\*

Department of Chemistry and Environmental Research Center, Missouri University of Science and Technology, Rolla, MO 65409, USA

#### ARTICLE INFO

Article history: Received 18 December 2009 Received in revised form 4 March 2010 Accepted 8 March 2010 Available online 17 March 2010

Keywords: F<sub>2</sub>-isoprostane isomers Oxidative stress Nanoparticles Solid phase extraction Cell membrane LC-MS/MS

#### ABSTRACT

F<sub>2</sub>-isoprostanes are lipid peroxidation products of arachidonic acid in cell membrane and are reliable biomarkers for oxidative stress and cell membrane damage. Nanomaterials are widely used as raw materials in many industries and will have high potentials to be used in life science and medical fields. However, the human health impact of nanoparticles has caused people's great concern. Unfortunately, the mechanisms of cytotoxicity of many nanoparticles are not well defined. By measuring the levels of  $F_2$ -isoprostane isomers in cultured cells after nanoparticle exposure, the information can be used to explain whether the cytotoxicity of nanoparticles is caused by lipid peroxidation and to investigate the biological pathways. In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to separate and quantify F<sub>2</sub>-isoprostane isomers in nanoparticle-treated human lung cancer cells. Silica oxide (15 nm) and other four metal oxide nanoparticles including Fe<sub>2</sub>O<sub>3</sub> (30 nm), Al<sub>2</sub>O<sub>3</sub> (13 nm), TiO<sub>2</sub> (40 nm) and ZnO (70 nm) are chosen in this study. The isotope forms of F<sub>2</sub>-isoprostane isomers, 8-iso-PGF<sub>2 $\alpha$ </sub>-d<sub>4</sub> and PGF<sub>2 $\alpha$ </sub>-d<sub>4</sub>, were used as internal standard (IS). After human lung epithelial cells were exposed to different nanoparticles for 24 h, F<sub>2</sub>-isoprostanes were extracted by a single step solid phase extraction with Oasis HLB cartridge. For the first time, six F2-isoprostane isomers were tentatively identified and quantified in human lung epithelial cells. The levels of F2-isoprostane isomers in the cells increased after the treatment with nanoparticles. For SiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, and ZnO nanoparticles, F<sub>2</sub>isoprostane isomers increasing are consistent with nanoparticles' cytotoxicity data. For Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> nanoparticles, F2-isoprostane isomers levels increased even before nanoparticles showed significant cytotoxicity at 100 µg/mL concentration in 24 h. Based on our best knowledge, this is the first study on the F<sub>2</sub>-isoprostane isomers corresponding to nanoparticles' exposure in vitro. Our study demonstrates that SiO<sub>2</sub> (15 nm) nanoparticle showed the highest degree of lipid peroxidation and cell membrane damage among the studied nanoparticles.

© 2010 Elsevier B.V. All rights reserved.

#### 1. Introduction

Nanotechnology has been developed for several decades depending on nanoparticles as its raw materials. The key features of nanoparticles are small particle size and large specific surface area [1]. Because of these special properties, nanoparticles have wide applications in catalysts, semiconductors, additives, and cosmetics [2–4]. Moreover, many researchers have used nanoparticles in biosensor, drug delivery and clinical treatment, especially for cancer treatment [5–9]. Recently, nanotoxicity, which means the

toxicity was caused by nanoparticles, has caused people's great concern [1,10,11]. Many studies, including our previous studies [12–17], have shown that nanoparticles are cytotoxic and can cause oxidative stress and DNA damage *in vitro* [18–20]. Our previous study reported that nanoparticles can cause lipid peroxidation and cell membrane damage by measuring total  $F_2$ -isoprostane levels as biomarkers [21].

F<sub>2</sub>-isoprostanes are a series of compounds formed from free radical initiated lipid peroxidation of arachidonic acid in the cell membrane. They are reliable biomarkers for oxidative stress and lipid peroxidation. The proposed mechanism is that free radicals such as hydroxyl radicals can attack  $C_7$ ,  $C_{10}$  and  $C_{13}$  three different sites of arachidonic acid carboxyl chain and abstract an allylic hydrogen. This process results in a delocalized pentadienyl carboncentered radical. Subsequently, an oxygen molecule is inserted and a peroxyl radical is formed. These peroxyl radicals undergo further cyclization, followed by the addition of another oxygen molecule



<sup>\*</sup> Corresponding author at: Department of Chemistry, Missouri University of Science and Technology, 400 West 11th Street, Rolla, MO 65409, USA. Tel.: +1 573 341 6220: fax: +1 573 341 6033.

E-mail addresses: xlvw9@mst.edu (X. Liu), pwhite@mst.edu (P.D. Whitefield), yinfa@mst.edu (Y. Ma).

<sup>0039-9140/\$ -</sup> see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.talanta.2010.03.009



Fig. 1. Structures of F<sub>2</sub>-isoprostane regioisomers. (a) 8-Iso-PGF<sub>2α</sub>, (b) PGF<sub>2α</sub>, (c) 11β-PGF<sub>2α</sub>, (d) 8-iso-15R-PGF<sub>2α</sub>, (e) 15R-PGF<sub>2α</sub>, (f) 5-trans-PGF<sub>2α</sub>, and (g) 8-iso-PGF<sub>2α</sub>, de (c) 11β-PGF<sub>2α</sub>, (c) 11β-PGF<sub>2α</sub>, (c) 11β-PGF<sub>2α</sub>, (c) 15R-PGF<sub>2α</sub>, (c)

to yield bicyclic endoperoxide molecules. These intermediates are then reduced to F<sub>2</sub>-isoprostanes, named because they possess Ftype prostane rings. In theory, four series (5-, 8-, 12-, 15-series) and 64 regioisomers of peroxidation products can be formed [22]. F<sub>2</sub>isoprostanes are formed in situ as esterified form in phospholipids of cell membrane. The enzyme named phospholipase catalyzes the esterified F<sub>2</sub>-isoprostanes to free F<sub>2</sub>-isoprostanes and free F<sub>2</sub>isoprostanes are released to biological fluids such as plasma and urine. In normal people, urinary F<sub>2</sub>-isoprostanes concentrations were  $0.2-1.5 \,\mu g/g$  creatinine [23]. It is important to study the isomers of F<sub>2</sub>-isoprostanes corresponding to oxidative injury because each isomer may have different biological functions. Moreover, it can help researchers to study the pathway of F<sub>2</sub>-isoprostanes formation in more detail. Among these isomers, 8-iso-PGF<sub>2 $\alpha$ </sub> has been widely studied and was found to possess some biological functions like nonspecific vasoconstriction, brochoconstriction, and modulation of platelet function [24-26]. But other isomer's biological functions are not clear yet.

Gas chromatography/mass spectrometry (GC/MS) method has been used for measuring F2-isoprostanes. Even though the method is sensitive, the procedure is very tedious and time-consuming. It required multi-steps of solid phase extraction, thin layer chromatography, and derivatization reactions [27,28]. Enzyme immunoassay (ELISA) is commercial available. But it can cause cross-linking reaction, making the data not reliable. Moreover, each assay kit can only measure one isomer of F2-isoprostanes, making the assay not efficient as well. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been proven to be sensitive and selective for simultaneously measurement of different isomers of F<sub>2</sub>-isoprostanes without derivatizations in urine, plasma, and cell culture matrix [29-31]. In our previous study, total free F2-isoprostanes were determinate by LC-MS method after the treatment of selected nanoparticles in human lung epithelial cells [21]. However, the changes of each F<sub>2</sub>-isoprostane isomer after nanoparticle treatments were not investigated. In this study, a one-cartridge solid phase extraction method using oasis HLB cartridge was further improved to efficiently extract F<sub>2</sub>-isoprostanes from complicated cell culture matrix, and a LC-MS/MS method was developed to separate and quantify six F2-isoprostane isomers in human lung epithelial cells after silica oxide and metal oxide nanoparticle exposure.

In this paper, five different nanoparticles were chosen for the study because they are more abundant in the environment and widely used in the industry. These nanoparticles include  $SiO_2$  (15 nm),  $Fe_2O_3$  (30 nm),  $Al_2O_3$  (13 nm),  $TiO_2$  (40 nm) and ZnO (70 nm). A549 human lung epithelial cell line (CCL-185, ATCC number) was used to study the exposure to nanoparticles because lung is the major organ affected when nanoparticles are inhaled. Six 15-series  $F_2$ -isoprostane isomers were tentatively determined in the cell culture after cellular exposure to the nanoparticles. The molecular structures of these isomers are shown in Fig. 1. The levels of

 $F_2$ -isoprostane isomers were quantified by LC–MS/MS method after exposure to each type of selected nanoparticles. The goal of this study was to explore and compare the response of different isomers and the extents of lipid peroxidation corresponding to nanoparticle treatment. This information can be very useful for revealing the mechanism of nanoparticle cytotoxicity and discover the biological functions of  $F_2$ -isoprostane isomers.

#### 2. Experimental

#### 2.1. Chemicals

Authentic standards of 8-iso-PGF<sub>2α</sub>, 8-iso-15R-PGF<sub>2α</sub>, 5-trans-PGF<sub>2α</sub>, 11β-PGF<sub>2α</sub>, 15R-PGF<sub>2α</sub>, PGF<sub>2α</sub> and internal standards of 8-iso-PGF<sub>2α</sub>-d<sub>4</sub>, PGF<sub>2α</sub>-d<sub>4</sub> were purchased from Cayman Chemical (Ann Arbor, MI, USA). HPLC/MS grade acetonitrile, methanol, HPLC grade hexane, ethyl acetate, and 2-propanol were purchased from Fisher Scientific (Pittsburgh, PA). Fetal bovine serum was purchased from American Type Culture Collection (ATCC) (Manassas, VA). Ham's F-12 medium with L-glutamine was purchased from Fisher Scientific (Pittsburgh, PA). Trypsin–EDTA (1×) was purchased from Invitrogen (Carlsbad, CA). HPLC/MS grade formic acid, penicillin–streptomycin, and citrate acid were obtained from Sigma–Aldrich (St. Louis, MO). Ultra pure deionized water was obtained from an Elix Milli-Q system (Millipore, Bedford, MA). All pH measurements were performed using an Accumet XL15 meter (Fisher Scientific).

#### 2.2. Nanoparticles

The SiO<sub>2</sub> nanoparticle was purchased from Degussa Co. (Parsippany, NJ). The Fe<sub>2</sub>O<sub>3</sub> nanoparticle was purchased from Nanophase Technologies (Romeoville, IL). The ZnO nanoparticle was purchased from Sigma–Aldrich (St. Louis, MO). The TiO<sub>2</sub> nanoparticle was purchased from NanoScale Corporation (Manhattan, KS). The Al<sub>2</sub>O<sub>3</sub> nanoparticle was synthesized by the room temperature homogeneous nucleation method [32]. Transmission electron microscopy (TEM; Philips EM420) was used to measure particle size and distribution. The particle sizes and distributions of these nanoparticles were listed in Table 1. Characterization of nanoparticle has been studied previously from our group [18,19]. Nanoparticles tend to

### Table 1

Nanoparticles size and distribution.

| Nanoparticle                   | Size and distribution (mean $\pm$ std) (nm) |
|--------------------------------|---------------------------------------------|
| SiO <sub>2</sub>               | $15 \pm 5$                                  |
| Fe <sub>2</sub> O <sub>3</sub> | $30 \pm 5$                                  |
| Al <sub>2</sub> O <sub>3</sub> | $13 \pm 2$                                  |
| TiO <sub>2</sub>               | $40\pm8$                                    |
| ZnO                            | $70 \pm 13$                                 |

aggregate in the solution over time. Therefore, nanoparticles were prepared freshly each time and dispersed by sonication for 15 min. Nanoparticle suspensions were applied to the cells immediately.

#### 2.3. Assessment of nanoparticle cytotoxicity

The cells were treated with various dosages of nanoparticles. After exposure for 24–48 h, cell viability was measured by MTS assay (from Promega). The MTS assay was conducted as follows: under yellow light, 100  $\mu$ L of PMS (phenazine methosulfate) solution was added to 2.0 mL of MTS (3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) solution immediately. 20  $\mu$ L of the combined MTS/PMS solution was added into each well of a 96-well plate. Each well contained 100  $\mu$ L of cells medium with 4000 cells. The plate was then incubated for 2 h at 37 °C in a humidified, 5% CO<sub>2</sub> incubator. Absorbance at 490 nm was recorded using a plate reader (FLUOstar OPTIMA).

#### 2.4. Cell culture and treatment with nanoparticles

The human lung epithelial cell line (A549) was purchased from ATCC (Manassas, VA). This cell line was chosen because it is a typical cell line that has widely been used for *in vitro* cytotoxicity study [18,19]. The cells were grown in T-75 cell culture flasks filled with Ham's F-12 medium supplemented with 10% fetal bovine serum, 100 units/mL penicillin, and 100  $\mu$ g/mL streptomycin. Cells were grown at 37 °C in a 5% CO<sub>2</sub> humidified incubator, and were split every 2–3 days.

For the nanoparticle treatment experiment, cells were seeded in a 65  $\times$  15 mm cell culture Petri dish at a density of 6  $\times$  10  $^5$  cells/mL cell medium. Cells were allowed to attach to the Petri dish for 24 h. Nanoparticle suspensions in the cell medium were freshly prepared each time. Appropriate nanoparticles were weighed and added to the cell medium to make the stock solution. The suspensions were vortex and sonicated for 15 min. The stock solution was diluted for several steps to get the working solution; after each dilution the suspensions were vortex and sonicated for 15 min. Therefore the nanoparticles were evenly dispersed in the cell medium. The old cell medium was removed from the Petri dish, and the freshly prepared cell medium with nanoparticles was added to the cells. Cells filled with the culture medium without nanoparticles were served as the control. Cells were treated with nanoparticles for 24-48 h. After that, cell medium was collected. Antioxidant 1% 1N citrate acid was added to the cell medium. The samples were stored in -80 °C freezer immediately until analysis.

#### 2.5. Solid phase extraction of F<sub>2</sub>-isoprostanes

Free F<sub>2</sub>-isoprostanes in the cell medium were extracted by Oasis HLB extraction cartridge (Waters, Milford, MA). 2 ng of internal standard 8-iso-PGF<sub>2 $\alpha$ </sub>-d<sub>4</sub>, PGF<sub>2 $\alpha$ </sub>-d<sub>4</sub> was added to each sample. Then 3 mL of 2% formic acid was added to the samples to adjust the pH to 3. The cartridges were conditioned and equilibrated with methanol and Milli Q water. The samples were applied to the cartridges. The cartridges were washed with 5% methanol. Then, the cartridges were washed with 5% methanol and 2% ammonia hydroxide. The cartridges were further washed with 5% methanol and 2% formic acid. Finally, the cartridges were washed with 5% methanol and 2% formic acid. F<sub>2</sub>-isoprostanes were eluted with hexane/ethyl acetate/2-propanol (30/65/5) solution. The solvent was evaporated to dry by a stream of nitrogen gas. The residue was dissolved in 200 µL of 0.1% formic acid in 50/50 Milli Q water/methanol, filtered through a 0.22 µm filter and was ready for LC–MS/MS analysis.

#### 2.6. Instrumentation

The HPLC system was Agilent 1100 series HPLC which included G1322A vacuum degasser, G1311A binary pump, G1329A autosampler and G1330B thermostatic column compartment. The column was Synergi Hydro-RP 80 Å,  $250 \times 2.0$  mm,  $4 \mu$ m column with C-18 guard column (Phenomenex, Torrance, CA). The column temperature was controlled at 25 °C. The mobile phase A was 0.1% formic acid in Milli Q water, mobile phase B was methanol. The flow rate was  $150 \mu$ L/min and the injection volume was  $40 \mu$ L. The gradient was 0–14 min 70% methanol; 14–19 min 70–95% methanol; 19–21 min 95–70% methanol; then the column was re-equilibrated to the starting condition.

The mass spectrometer was 4000 QTRAP mass spectrometer (Applied Biosystems, Foster City, CA). The ion source was Turbolon Spray (TIS). The scan mode was multiple reaction monitoring (MRM) and the polarity was negative. Source-dependent parameters: Gas 1, Gas 2, Source temperature, Curtain gas, and Ion spray voltage were set at 40 psi, 60 psi, 450 °C, 10 psi, and -4500 V, respectively. Compound-dependent parameters: declustering potential (DP), entrance potential (EP), collision cell exit potential (CXP), collision energy (CE) were set at -86, -15, -11, and -36 V, respectively. Deprotonated molecular ion [M-H]<sup>-</sup> was selected at the first quadrupole (Q1) for standard 8-iso-PGF<sub>2 $\alpha$ </sub> (m/z = 353) and internal standard (IS) 8-iso-PGF<sub>2 $\alpha$ </sub>-d<sub>4</sub> (m/z = 357). MRM transition ion pair 353/193 was chosen for quantification. Ion pair 353/309 was the second abundant product ion, but it was not a specific ion pair for  $F_2$ -isoprostanes. For IS 8-iso-PGF<sub>2 $\alpha$ </sub>-d<sub>4</sub>. ion pair 357/197 was chosen for quantification. The quantification was based on the peak area ratio of the standard 8-iso-PGF<sub>2 $\alpha$ </sub> MRM transition ion pair (353/193) to IS 8-iso-PGF<sub>20</sub>-d<sub>4</sub> MRM transition ion pair (357/197). The calibration curve linear range was  $0.1-50 \text{ ng/mL}(y=0.6008x-0.0966, r^2=0.9997)$ . The limit of detection (LOD) was 0.05 ng/mL and the LOQ the limit of quantification (LOQ) was 0.1 ng/mL. Analyst 1.4.2 software (Applied Biosystems) was used to control the LC-MS/MS instrument and process the data.

#### 2.7. Statistics

Data were expressed as the mean  $\pm$  SD of three experiments. Student's *t*-test was used for significance testing, using a *p* value of 0.05.

#### 3. Results and discussion

#### 3.1. Nanoparticle cytotoxicity study

A549 cells were exposed to each of silica oxide and metal oxide nanoparticles for 24-48 h. Cells were treated with SiO<sub>2</sub> (15 nm) nanoparticle for 48 h. The dosage levels were 5, 10, 25, 50, 75, and 100 µg/mL, with cell viability of 99.0%, 98.3%, 90.4%, 88.2%, 83.9%, and 78.3%, respectively, compared with the control cells. Among these, cell viability decreased significantly with dosage levels of 75 and 100  $\mu$ g/mL, respectively, compared with the control group (p < 0.05) [21]. After cells were exposed to Fe<sub>2</sub>O<sub>3</sub> (30 nm) nanoparticle for 48 h at the dosage levels of 30, 40, 50, 80 and  $100 \,\mu\text{g/mL}$ , cell viability decreased to 93.3%, 88.9%, 83.5%, 80.5%, and 77.2%, respectively, compared with the control cells. At dosage levels of 80 and 100  $\mu$ g/mL, cell viability decreased significantly. (p < 0.05) [21]. ZnO nanoparticle was the most toxic among the five nanoparticles. After cells were exposed to ZnO (70 nm) nanoparticle for only 24 h, the cell viability decreased to 73.4%, 34.1% and 25.9%, respectively, at the dosage levels of 12, 14, and  $16 \mu g/mL (p < 0.05)$  [20].  $Al_2O_3$  (13 nm) nanoparticle did not show significant cytotoxicity after 48 h exposure at the dosage levels of 5, 10, 25, 50, 75, and



**Fig. 2.** A549 cell viability after 48 h exposure to 5, 10, 25, 50, 75, and 100  $\mu$ g/mL of 13 nm Al<sub>2</sub>O<sub>3</sub> nanoparticle. Values are mean ± SD (*n* = 3). *p* > 0.05.

 $100\,\mu g/mL$  (Fig. 2). TiO<sub>2</sub> (40 nm) nanoparticle also did not show significant cytotoxicity at the dosage levels of 1, 10, 50, and 100  $\mu g/mL$  after 48 h exposure (Fig. 3). The cell viability data demonstrated different degrees of cytotoxicity for SiO<sub>2</sub> (15 nm), Fe<sub>2</sub>O<sub>3</sub> (30 nm) and ZnO (70 nm) nanoparticles, while Al<sub>2</sub>O<sub>3</sub> (13 nm) and TiO<sub>2</sub> (40 nm) did not show significant cytotoxicity to the cells after 24–48 h exposure.

# 3.2. $F_2$ -isoprostane isomers separation and quantification by LC-MS/MS

Six isomers were chosen in this study because of the commercial availability of these standards. The separation of F<sub>2</sub>-isoprostane isomers using LC is challenging. These regioisomers have very close polarity and they are difficult to be separated on a LC column. To achieve the separation, different columns have been tested, and Synergi Hydro-RP 250 × 2 mm, 4  $\mu$ m column (from Phenomenex) provided the best separation. The six isomers were separated between 8 and 13 min (as shown in Fig. 4).

Different mobile phases have also been studied and optimized. Since  $F_2$ -isoprostanes were easily deprotonated and formed negative ions, 5 mM ammonium formate in water and 5 mM ammonium formate in methanol was used at the beginning. The  $F_2$ -isoprostane isomers can be well separated, but the sensitivity was very low (data not shown). When the mobile phases were changed to 0.1% formic acid in water and methanol, the compounds gained 10 times







**Fig. 4.** The separation of  $F_2$ -isoprostane isomers. (1) 8-iso-15R-PGF<sub>2 $\alpha$ </sub>, (2) 8-iso-PGF<sub>2 $\alpha$ </sub>, (3) 11 $\beta$ -PGF<sub>2 $\alpha$ </sub>, (4) 15R-PGF<sub>2 $\alpha$ </sub>, (a) (5) 5-trans-PGF<sub>2 $\alpha$ </sub>, (6) PGF<sub>2 $\alpha$ </sub>.

sensitivity compared with 5 mM ammonium formate as buffer. It was also discovered that different organic solvents affected the F<sub>2</sub>-isoprostanes detection sensitivity significantly. Methanol provided higher sensitivity than acetonitrile. Therefore, 0.1% formic acid in water and methanol were chosen for the mobile phase through the entire study.

MRM transition ion pair 353/193 was monitored for the isomers and ion pair 357/197 was monitored for the IS. These are consistent with the literature reports [22,23]. Extracted ion chromatograms of standard 8-iso-PGF<sub>2 $\alpha$ </sub> and IS were shown in Fig. 5. The retention times for both the standard 8-iso-PGF<sub>2 $\alpha$ </sub> and IS were 9.12 min.

#### 3.3. Sample preparation

Sample preparation is a crucial step in the determination of  $F_2$ -isoprostanes because cell medium is a complicated biological matrix and  $F_2$ -isoprostane isomers are at trace levels in the cell. Free



**Fig. 5.** Extracted ion chromatogram of standard 8-iso-PGF<sub>2α</sub> and IS 8-iso-PGF<sub>2α</sub>-d<sub>4</sub>. The retention time for the standard 8-iso-PGF<sub>2α</sub> and IS is 9.12 min. The blue trace is MRM ion pair 353/193. The green trace is MRM ion pair 357/197. The red trace is MRM ion pair 353/309. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)



**Fig. 6.** The extracted ion chromatograms of  $F_2$ -isoprostane isomers in (a) the control, (b) SiO<sub>2</sub> (50 µg/mL), (c) Al<sub>2</sub>O<sub>3</sub> (100 µg/mL), (d) TiO<sub>2</sub> (100 µg/mL), (e) Fe<sub>2</sub>O<sub>3</sub> (100 µg/mL) and (f) ZnO (15 µg/mL) nanoparticle-treated cells. Peaks (1) 8-iso-15R-PGF<sub>2</sub>, (2) 8-iso-PGF<sub>2</sub>, (3) 11β-PGF<sub>2</sub>, (4)+(5) 15R-PGF<sub>2</sub>, and 5-trans-PGF<sub>2</sub>, (6) PGF<sub>2</sub>, (7) Unknown 1, and (8) Unknown 2.

F<sub>2</sub>-isoprostanes are released into the cell medium by the enzyme named as phospholipase. F<sub>2</sub>-isoprostanes are extracted by solid phase extraction from the cell culture medium. At first, C18 cartridge (Waters, Milford, MA) was used to extract F<sub>2</sub>-isoprostanes, but the recovery was only at about 20%. Oasis HLB cartridge was then used for sample extraction. After sample was loaded on the cartridge, consecutive washing with methanol, acidified water and basic water cleaned up any salted, acidic and basic compounds in the sample. At low concentration (2ng/mL), the recoveries of 8-iso-PGF\_{2\alpha} and 8-iso-PGF\_{2\alpha}\text{-}d\_4 standards were 77.6  $\pm$  2.4 and 77.1  $\pm$  4.9 (*n* = 3) respectively. At high concentration (10 ng/mL), the recoveries of 8-iso-PGF\_{2\alpha} and 8-iso-PGF\_{2\alpha}\text{-}d\_4 were  $80.7\pm2.1$ and  $80.5 \pm 4.1$  (*n* = 3) respectively. From the mass spectrum, we did not find any major peak to interfere with the F<sub>2</sub>-isoprostane analytes. Different elution solvents have also been studied. Methanol can elute F<sub>2</sub>-isoprostanes, but it caused ion suppression (date not shown). Ethyl acetate can effectively elute F<sub>2</sub>-isoprostanes and no ion suppression was found. This solid phase extraction procedure is only one cartridge procedure and is easier, faster and cheaper than the previous procedures requiring both HLB cartridge and µElution plate [30].

## 3.4. Levels of F<sub>2</sub>-isoprostane isomers in cell media after nanoparticle treatment

In this study, the A549 cells were exposed to each of five nanoparticles for 24 h. F<sub>2</sub>-isoprostane isomers were tentatively identified by retention time and MRM transition 353/193. The levels of these isomers were then quantified by the developed LC–MS/MS method. In the control cells, the  $11\beta$ -PGF<sub>2 $\alpha$ </sub>

isomer's concentration was below the detection limit. Other five isomers including 8-iso-15R-PGF<sub>2α</sub>, 8-iso-PGF<sub>2α</sub>, 15R-PGF<sub>2α</sub>, 5-trans-PGF<sub>2α</sub>, and PGF<sub>2α</sub> were detectable. 15R-PGF<sub>2α</sub> and 5-trans-PGF<sub>2α</sub> isomers were coeluted. The extracted ion chromatogram of F<sub>2</sub>-isoprostane isomers of the control is shown in Fig. 6a.

## 3.4.1. $F_2$ -isoprostane isomers in SiO<sub>2</sub> nanoparticle-treated cell media

After cells were exposed to SiO<sub>2</sub> nanoparticles (15 nm) at the dosage levels of 50 and 100 µg/mL, the levels of six F<sub>2</sub>isoprostane isomers increased significantly compared with the control (p < 0.05) and the concentration increase was dose dependent. Moreover, two new peaks (Unknown 1 and Unknown 2) were detected next to the PGF<sub>2 $\alpha$ </sub> isomer after SiO<sub>2</sub> nanoparticle exposure. It is possible that they are new isomers of F<sub>2</sub>-isoprostanes which have the same mass to charge ratio. Due to the lack of standards, we cannot identify them at this time. The extracted ion chromatogram of F<sub>2</sub>-isoprostane isomers after SiO<sub>2</sub> nanoparticle (50 µg/mL) treatment is shown in Fig. 6b.

## 3.4.2. $F_2$ -isoprostane isomers in $Al_2O_3$ nanoparticle-treated cell media

After A549 cells were exposed to  $Al_2O_3$  nanoparticles (13 nm) at the dosage level of  $100 \mu g/mL$ , the levels of 8-iso-PGF<sub>2α</sub>,  $11\beta$ -PGF<sub>2α</sub>, 15R-PGF<sub>2α</sub> and 5-trans-PGF<sub>2α</sub>, and PGF<sub>2α</sub> isomers increased significantly compared with the control (p < 0.05). The level of 8-iso-15R-PGF<sub>2α</sub> isomer also increased compared with the control, but was not significant (p > 0.05). Even though the results were similar to those of SiO<sub>2</sub> nanoparticle treatment, only Unknown 1 was detected in  $Al_2O_3$  nanoparticle-treated cells. The extracted ion

1604 **Table 2** 

| 11 | 3-PGF2~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | isomer a  | nd two | unknowns | concentrations | before and | l after nano | particle t | reatment | $(mean \pm SD)$ | ). $n = 3$ . |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|----------|----------------|------------|--------------|------------|----------|-----------------|--------------|
|    | <b>J i G i</b> <i>D</i> <b>i</b> <i>D</i> <b>i <i>D</i> <b>i</b> <i>D</i> <b>i <i>D</i> <b>i</b> <i>D</i> <b>i</b> <i>D</i> <b>i</b> <i>D</i> <b>i</b> <i>D <b>i</b> <i>D</i> <b>i</b> <i>D</i> <b>i</b> <i>D <b>i</b> <i>D</i> <b>i</b> <i>D <b>i</b> <i>D</i> <b>i</b> <i>D <b>i</b> <i>D <b></b></i></i></i></i></i></b></b> | noonner a |        |          | concentrations | berore and | ancer mano   | parerere i |          | mean ± 0D       | ,,           |

| Isomers                      | $11\beta$ -PGF <sub>2<math>\alpha</math></sub> (ng/million cells) | Unknown 1 (ng/million cells) | Unknown 2 (ng/million cells) |
|------------------------------|-------------------------------------------------------------------|------------------------------|------------------------------|
| Control                      | <0.0065                                                           | <0.0065                      | <0.0065                      |
| SiO <sub>2</sub> (50 μg/mL)  | $0.700 \pm 0.215^{*}$                                             | $0.773 \pm 0.527^{*}$        | $0.118 \pm 0.033^{*}$        |
| SiO <sub>2</sub> (100 µg/mL) | $1.87 \pm 0.496^{*}$                                              | $3.32 \pm 0.136^{*}$         | $0.481 \pm 0.009^{*}$        |
| $Al_2O_3$ (100 µg/mL)        | $0.156 \pm 0.067^{*}$                                             | $0.082 \pm 0.054^{*}$        | <0.0065                      |
| TiO <sub>2</sub> (100 μg/mL) | $0.151 \pm 0.069^{*}$                                             | <0.0065                      | <0.0065                      |
| $Fe_2O_3$ (100 µg/mL)        | $0.012 \pm 0.008^{*}$                                             | <0.0065                      | <0.0065                      |
| ZnO (15 μg/mL)               | $0.014 \pm 0.005^{*}$                                             | $0.061 \pm 0.031^{*}$        | <0.0065                      |

\* The concentration was significantly different from that of control.

chromatogram of  $F_2$ -isoprostane isomers after  $Al_2O_3$  nanoparticle (100  $\mu$ g/mL) treatment is shown in Fig. 6c.

# 3.4.3. $F_2$ -isoprostane isomers in TiO<sub>2</sub> nanoparticle-treated cell media

Similarly, after A549 cells were exposed to TiO<sub>2</sub> (40 nm) nanoparticles at the dosage level of  $100 \mu g/mL$ , the levels of 8-iso-PGF<sub>2 $\alpha$ </sub>,  $11\beta$ -PGF<sub>2 $\alpha$ </sub>, 15R-PGF<sub>2 $\alpha$ </sub> and 5-trans-PGF<sub>2 $\alpha$ </sub>, and PGF<sub>2 $\alpha$ </sub> isomers increased significantly compared with the control (p < 0.05). The level of 8-iso-15R-PGF<sub>2 $\alpha$ </sub> isomer also increased compared with the control, but the increase was not significant (p > 0.05). The extracted ion chromatogram of F<sub>2</sub>-isoprostane isomers of TiO<sub>2</sub> nanoparticle (100  $\mu$ g/mL) treated cells is shown in Fig. 6d.

# 3.4.4. $F_2$ -isoprostane isomers in $Fe_2O_3$ nanoparticle-treated cell media

After A549 cells were exposed to Fe<sub>2</sub>O<sub>3</sub> (30 nm) nanoparticles at the dosage level of 100 µg/mL, the levels of 11β-PGF<sub>2α</sub> and PGF<sub>2α</sub> isomers increased significantly compared with the control (p < 0.05). The levels of 8-iso-PGF<sub>2α</sub>, 15R-PGF<sub>2α</sub> and 5-trans-PGF<sub>2α</sub> isomers also increased compared with the control, but were not significant (p > 0.05). The level of 8-iso-15R-PGF<sub>2α</sub> isomer did not increase compared with the control. The extracted ion chromatogram of F<sub>2</sub>-isoprostane isomers of Fe<sub>2</sub>O<sub>3</sub> nanoparticle (100 µg/mL) treated cells was shown in Fig. 6e.

## 3.4.5. F<sub>2</sub>-isoprostane isomers in ZnO nanoparticle-treated cell media

After A549 cells were exposed to ZnO (70 nm) nanoparticle at the dosage level of 15 µg/mL, the levels of 8-iso-PGF<sub>2α</sub>, 11β-PGF<sub>2α</sub> and PGF<sub>2α</sub> isomers increased significantly compared with the control (p < 0.05). The level of 15R-PGF<sub>2α</sub> and 5-trans-PGF<sub>2α</sub> isomer also increased compared with the control, but were not significant (p > 0.05). No change was observed on the level of 8-iso-15R-PGF<sub>2α</sub> isomer. The phenomenon was very similar to those of SiO<sub>2</sub> (15 nm) and Al<sub>2</sub>O<sub>3</sub> (13 nm) nanoparticles, and the Unknown 1 peak was detected in ZnO (70 nm) nanoparticle-treated cells. The extracted ion chromatogram of F<sub>2</sub>-isoprostane isomers of ZnO nanoparticle (15 µg/mL) treated cells is shown in Fig. 6f.

Total of six isomers were quantified by LC-MS/MS method in this study. In the control cells, the concentration of 8-iso-15R-PGF<sub>2 $\alpha$ </sub> isomer was 0.0360 ± 0.0023 ng/million cells (*n* = 3). SiO<sub>2</sub> (at dosage levels of 50, 100 µg/mL), Al<sub>2</sub>O<sub>3</sub>, and TiO<sub>2</sub> nanoparticles (at the dosage levels of 100 µg/mL) caused significant increase of 8-iso-15R-PGF<sub>2 $\alpha$ </sub> isomer concentration compared with the control. However, Fe<sub>2</sub>O<sub>3</sub> (at the dosage levels of 100 µg/mL) and ZnO nanoparticles (at the dosage level of 15 µg/mL) did not cause significant increasing of 8-iso-15R-PGF<sub>2 $\alpha$ </sub> isomer concentration. The data of 8-iso-15R-PGF<sub>2 $\alpha$ </sub> isomer after nanoparticle treatment are shown in Fig. 7.

The 8-iso-PGF<sub>2 $\alpha$ </sub> isomer concentration in the control cell media was  $0.0294 \pm 0.0007$  ng/million cells (n = 3). After cellular exposure to SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, and ZnO at the dosage levels described



Treated nanoparticles

**Fig. 7.** 8-iso-15R-PGF<sub>2 $\alpha$ </sub> isomer concentrations in A549 cells after SiO<sub>2</sub> (15 nm), Al<sub>2</sub>O<sub>3</sub> (13 nm), TiO<sub>2</sub> (40 nm), Fe<sub>2</sub>O<sub>3</sub> (30 nm) and ZnO (70 nm) nanoparticle treatment. Data with asterisk means *p* < 0.05 compared with Control. Data with  $\alpha$  means *p* < 0.05 compared with SiO<sub>2</sub> nanoparticle at the concentration 50 µg/mL.

in the last paragraph, the 8-iso-PGF<sub>2 $\alpha$ </sub> isomer concentration in cell media increased significantly compared with the control. The detailed data of 8-iso-PGF<sub>2 $\alpha$ </sub> isomer are shown in Fig. 8.

The 11β-PGF<sub>2α</sub> isomer was below the detection limit in the A549 control cells. After nanoparticle exposure, the level of this isomer was detectable. All of the five nanoparticles caused a significant increase of  $11\beta$ -PGF<sub>2α</sub> isomer concentration compared with the control. The data of  $11\beta$ -PGF<sub>2α</sub> isomer after nanoparticle exposure



**Fig. 8.** 8-iso-PGF<sub>2α</sub> isomer concentrations in A549 cells after SiO<sub>2</sub> (15 nm), Al<sub>2</sub>O<sub>3</sub> (13 nm), TiO<sub>2</sub> (40 nm), Fe<sub>2</sub>O<sub>3</sub> (30 nm) and ZnO (70 nm) nanoparticle treatment. Data with asterisk means p < 0.05 compared with Control. Data with  $\alpha$  means p < 0.05 compared with SiO<sub>2</sub> nanoparticle at the concentration 50 µg/mL.



**Fig. 9.** 15R-PGF<sub>2</sub> $\alpha$  and 5-trans-PGF<sub>2</sub> $\alpha$  isomer concentrations in A549 cells after SiO<sub>2</sub> (15 nm), Al<sub>2</sub>O<sub>3</sub> (13 nm), TiO<sub>2</sub> (40 nm), Fe<sub>2</sub>O<sub>3</sub> (30 nm) and ZnO (70 nm) nanoparticle treatment. Data with asterisk means *p* < 0.05 compared with Control. Data with  $\alpha$  means *p* < 0.05 compared with SiO<sub>2</sub> nanoparticle at the concentration 50 µg/mL.

were listed in Table 2. Since  $11\beta$ -PGF<sub>2 $\alpha$ </sub> has two *trans* ring hydroxyl groups and two *trans* alkyl chains, it is not a favorite product of free radical reaction. In addition, 5-series of isoprostanes can also form 193 product ion [31]. This deserves further study.

In the control cells, the concentrations of  $15\text{R-PGF}_{2\alpha}$  and 5-trans-PGF<sub>2 $\alpha$ </sub> isomers were  $0.207 \pm 0.015$  ng/million cells (*n*=3). After SiO<sub>2</sub> nanoparticle exposure at the dosage levels of 50,  $100 \,\mu$ g/mL, the concentrations of  $15\text{R-PGF}_{2\alpha}$  and 5-trans-PGF<sub>2 $\alpha$ </sub> isomers increased significantly compared with the control. However, Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, and ZnO nanoparticle at the same dosage levels described above did not caused significant increase of  $15\text{R-PGF}_{2\alpha}$  and 5-trans-PGF<sub>2 $\alpha$ </sub> isomer concentrations. The data of  $15\text{R-PGF}_{2\alpha}$  and 5-trans-PGF<sub>2 $\alpha$ </sub> isomers after nanoparticle treatment are shown in Fig. 9.

Among these six isomers,  $PGF_{2\alpha}$  was the most abundant isomer and its concentration in the control cells was  $1.032 \pm 0.106$  ng/million cells (n=3). All five nanoparticles increased its concentration significantly compared with the control. The data of  $PGF_{2\alpha}$  isomer after nanoparticle treatment are shown in Fig. 10.  $PGF_{2\alpha}$  is both a cyclooxygenase (COX) enzyme and free radical product, which may explain its greater abundance in the cells. Whether nanoparticles increased COX activity deserves further study.

In the SiO<sub>2</sub> nanoparticle exposure study, two new peaks (Unknown 1 and Unknown 2) were found compared with the control. However, in  $Al_2O_3$  and ZnO nanoparticle exposure study, only one new peak (Unknown 1) was detected. Their data were listed in Table 2. The data implied that even though SiO<sub>2</sub>,  $Al_2O_3$ , and ZnO can cause oxidative stress and cellular membrane damage, the detailed mechanism may not be totally the same. Moreover, 5-series of F<sub>2</sub>-isoprostanes also can produce 193 product ion. It is possible that Unknown 1 and Unknown 2 are 5-series of F<sub>2</sub>-isoprostanes. This phenomenon deserves further study.

Among these five types of studied nanoparticles, SiO<sub>2</sub> nanoparticles induced the highest increase of  $F_2$ -isoprostane isomers compared with other four metal oxide nanoparticles. Comparing with the cytotoxicity data of SiO<sub>2</sub>, the cell viabilities were 88.2% and 78.3%, respectively, at the dosage levels of 50 and 100 µg/mL after 48 h exposure. For ZnO (70 nm) nanoparticles, the phenomenon was very different. Our previous study showed that ZnO nanoparticle was the most cytotoxic and the cell viability was 34.1% at the dosage level of 14 µg/mL after 24 h exposure. However,  $F_2$ -isoprostane isomers concentrations were lower in ZnO



**Fig. 10.** PGF<sub>2α</sub> isomer concentrations in A549 cells after SiO<sub>2</sub> (15 nm), Al<sub>2</sub>O<sub>3</sub> (13 nm), TiO<sub>2</sub> (40 nm), Fe<sub>2</sub>O<sub>3</sub> (30 nm) and ZnO (70 nm) nanoparticle treatment. Data with asterisk means p < 0.05 compared with Control. Data with  $\alpha$  means p < 0.05 compared with SiO<sub>2</sub> nanoparticle at the concentration 50 µg/mL.

nanoparticle-treated cells than those of SiO<sub>2</sub> nanoparticle-treated cells. These data revealed that SiO<sub>2</sub> nanoparticles induced higher degree of lipid peroxidation and cell membrane damage than ZnO, Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, and Fe<sub>2</sub>O<sub>3</sub> metal oxide nanoparticles. Here, the data showed slightly different patterns of 15-series of F<sub>2</sub>-isoprostane isomers corresponding to six nanoparticles exposure. What caused this difference deserves further study. Our previous study showed that ZnO nanoparticle can cause DNA damage [20]. Therefore, these nanoparticles may involve different mechanisms in causing oxidative stress. Our data showed that TiO<sub>2</sub> nanoparticles increased F<sub>2</sub>-isoprostane isomers and cause cell membrane damage which was consistent with previous cytotoxicity study on TiO<sub>2</sub> nanoparticle [14]. A separate study in our research group using imaging technique showed that Al<sub>2</sub>O<sub>3</sub> (13 nm) nanoparticles can cause cell membrane depolarization in A549 cells [33], which also supported our data in this study.

F<sub>2</sub>-isoprostane isomers have been widely studied in the plasma and urine to serve as reliable biomarkers for oxidative stress [34,35]. Urinary F<sub>2</sub>-isoprostane metabolites including 2,3-dinor-5,6-dihydro-8-iso-PGF<sub>2 $\alpha$ </sub> and 2,3-dinor-8-iso-PGF<sub>2 $\alpha$ </sub> have greater abundance than F2-isoprostanes and also can serve as biomarkers for oxidative stress [36]. It has been reported that cigarette smokers had higher concentrations of urinary F<sub>2</sub>-isoprostanes and their metabolites [23]. Based on our best knowledge, our study is the first report of increased F2-isoprostane isomers in A549 cells after nanoparticle exposure. 8-Iso-PGF<sub>2 $\alpha$ </sub> isomer is considered as the most important isomers of F2-isoprostanes because its structure is favorite to be formed by free radicals and has higher abundant than other isomers [37]. Some studies have shown that it possesses some biological functions [24–26]. In our study, PGF<sub>2 $\alpha$ </sub> was also the most abundant isomer and increased dramatically after nanoparticle treatment. Five types of studied nanoparticles can all induce significant increase of 8-iso-PGF<sub>2 $\alpha$ </sub> and PGF<sub>2 $\alpha$ </sub> isomer concentrations.

#### 4. Conclusions

For the first time, a LC–MS/MS method has been developed to determine F<sub>2</sub>-isoprostane isomers in human lung epithelial cells after exposure to SiO<sub>2</sub> (15 nm), Al<sub>2</sub>O<sub>3</sub> (13 nm), TiO<sub>2</sub> (40 nm), Fe<sub>2</sub>O<sub>3</sub> (30 nm), and ZnO (70 nm) nanoparticles. After 24 h exposure, the concentrations of F<sub>2</sub>-isoprostane isomers increased at different levels compared with the control cells. Data showed that these nanoparticles can induce lipid peroxidation and cell membrane damage at different degrees. SiO<sub>2</sub> nanoparticles induced significantly higher concentrations of F<sub>2</sub>-isoprostane isomers than other four metal oxide nanoparticles in A549 cells. A simplified solid phase extraction procedure was also developed without ion suppression in mass spectrometer. The time response to the concentrations of biomarker F2-isoprostane isomers and the size effects of nanoparticles on levels of the F<sub>2</sub>-isoprostane isomers will be further studied. At the same time, the identification of two detected unknown peaks and screen for other isomers and metabolites of F<sub>2</sub>-isoprostanes due to nanoparticle stimulation will be performed. Our data in this study will help researchers understanding the mechanism of nanotoxicity and protecting people's health when we work with nanoparticles.

#### Acknowledgements

The authors thank the financial support from the Department of Chemistry and Environmental Research Center at the Missouri University of Science and Technology.

#### References

- [1] A. Nel, T. Xia, L. Maedler, N. Li, Science (Washington, DC, USA) 311 (2006) 622–627.
- [2] B. Weidenhof, M. Reiser, K. Stowe, W.F. Maier, M. Kim, J. Azurdia, E. Gulari, E. Seker, A. Barks, R.M. Laine, J. Am. Chem. Soc. 131 (2009) 9207–9219.
- [3] R. Voggu, S. Pal, S.K. Pati, C.N.R. Rao, J. Phys.: Condens. Matter 20 (2008), 215211/215211–215211/215215.
- [4] Y. Xuan, X. Zhao, J. Li, Y. Liu, L. Qin, Runhua Yu Mifeng 34 (2009) 14-16.
- [5] Y.-T. Ke, H.-F. Wu, Huaxue 66 (2008) 231–240.
- [6] H. Lord, S.O. Kelley, J. Mater. Chem. 19 (2009) 3127–3134.
- [7] K. Tamada, Mol. Electron. Bioelectron. 19 (2008) 95–96.
  [8] S. Prakash, A.G. Kulamarva, Recent Pat. Drug Delivery Formulation 1 (2007) 214–221.
- [9] F. Zhou, D. Xing, Z. Ou, B. Wu, D.E. Resasco, W.R. Chen, J. Biomed. Opt. 14 (2009), 021009/021001–021009/021007.

- [10] G.J. Nohynek, E.K. Dufour, M.S. Roberts, Skin Pharmacol. Physiol. 21 (2008) 136-149.
- [11] G. Oberdorster, E. Oberdorster, J. Oberdorster, Environ. Health Perspect. 113 (2005) 823–839.
- [12] M. Auffan, W. Achouak, J. Rose, M.-A. Roncato, C. Chaneac, D.T. Waite, A. Masion, J.C. Woicik, M.R. Wiesner, J.-Y. Bottero, Environ. Sci. Technol. 42 (2008) 6730–6735.
- [13] K. Fujiwara, H. Suematsu, E. Kiyomiya, M. Aoki, M. Sato, N. Moritoki, J. Environ. Health Sci. Part A: Toxic/Hazard Subst. Environ. Eng. 43 (2008) 1167–1173.
- [14] J.-R. Gurr, A.S.S. Wang, C.-H. Chen, K.-Y. Jan, Toxicology 213 (2005) 66–73.
   [15] Y.-H. Hsin, C.-F. Chen, S. Huang, T.-S. Shih, P.-S. Lai, P.J. Chueh, Toxicol. Lett. 179
- (2008) 130–139. [16] S.M. Hussain, K.L. Hess, J.M. Gearhart, K.T. Geiss, J.J. Schlager, Toxicol. in Vitro
- 19 (2005) 975–983. [17] H.L. Karlsson, P. Cronholm, J. Gustafsson, L. Moeller, Chem. Res. Toxicol. 21
- (2008) 1726–1732. [18] W. Lin, Y.-w. Huang, X.-D. Zhou, Y. Ma, Int. J. Toxicol. 25 (2006) 451–457.
- [18] W. Lin, Y.-W. Huang, X.-D. Zhou, Y. Ma, Int. J. Toxicol. 25 (2006) 451–457. [19] W. Lin, Y.-W. Huang, X.-D. Zhou, Y. Ma, Toxicol. Appl. Pharmacol. 220 (2007)
- 226. [20] W. Lin, Y. Xu, C.-C. Huang, Y. Ma, K.B. Shannon, D.-R. Chen, Y.-W. Huang, J.
- [20] W. Lill, F. Al, C.-C. Huang, F. Ma, K.B. Shahhon, D.-K. Chen, F.-W. Huang, J. Nanopart. Res. 11 (2009) 25–39.
- [21] X. Liu, P. Whitefield, Y. Ma, Toxicol. Environ. Chem., in press. doi:10.1080/02772240903127292.
- [22] H. Yin, E.S. Musiek, J.D. Morrow, J. Biol. Sci. (Faisalabad, Pak.) 6 (2006) 469-479.
- [23] A.W. Taylor, R.S. Bruno, M.G. Traber, Lipids 43 (2008) 925–936.
- [24] K. Takahashi, T.M. Nammour, M. Fukunaga, J. Ebert, J.D. Morrow, L.J. Roberts II, R.L. Hoover, K.F. Badr, J. Clin. Invest. 90 (1992) 136-141.
- [25] J.D. Morrow, T.A. Minton, L.J. Roberts II, Prostaglandins 44 (1992) 155-163.
- [26] P. Minuz, G. Andrioli, M. Degan, S. Gaino, R. Ortolani, R. Tommasoli, V. Zuliani, A. Lechi, C. Lechi, Arterioscler. Thromb. Vasc. Biol. 18 (1998) 1248–1256.
- [27] J.D. Morrow, L.J. Roberts II, Methods Enzymol. 300 (1999) 3-12.
- [28] J.D. Morrow, W.E. Zackert, J.P. Yang, E.H. Kurhts, D. Callewaert, R. Dworski, K. Kanai, D. Taber, K. Moore, J.A. Oates, L.J. Roberts, Anal. Biochem. 269 (1999) 326–331.
- [29] M. Haschke, Y.L. Zhang, C. Kahle, J. Klawitter, M. Korecka, L.M. Shaw, U. Christians, Clin. Chem. (Washington, DC, USA) 53 (2007) 489–497.
- [30] B. Zhang, K. Saku, J. Lipid Res. 48 (2007) 733-744.
- [31] A.W. Taylor, R.S. Bruno, B. Frei, M.G. Traber, Anal. Biochem. 350 (2006) 41–51.
- [32] X.D. Zhou, W. Huebner, H.U. Anderson, Appl. Phys. Lett. 80 (2002) 3814–3816.
   [33] W. Lin, I. Stayton, Y.-w. Huang, X.-D. Zhou, Y. Ma, Toxicol. Environ. Chem. 90
- (2008) 983–996. [34] T. Sicilia, A. Mally, U. Schauer, A. Paehler, W. Voelkel, J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. 861 (2008) 48–55.
- [35] G.L. Milne, H. Yin, J.D. Brooks, S. Sanchez, LJ. Roberts II, J.D. Morrow, Methods Enzymol. 433 (2007) 113–126.
- [36] Y. Liang, P. Wei, R.W. Duke, P.D. Reaven, S.M. Harman, R.G. Cutler, C.B. Heward, Free Radical Biol. Med. 34 (2003) 409-418.
- [37] L.J. Roberts, J.D. Morrow, Free Radical Biol. Med. 28 (2000) 505-513.